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Abstract. This paper proposes a system for fine-grained classification of de-
velopmental disorders via measurements of individuals’ eye-movements using
multi-modal visual data. While the system is engineered to solve a psychiatric
problem, we believe the underlying principles and general methodology will be
of interest not only to psychiatrists but to researchers and engineers in medical
machine vision. The idea is to build features from different visual sources that
capture information not contained in either modality. Using an eye-tracker and
a camera in a setup involving two individuals speaking, we build temporal at-
tention features that describe the semantic location that one person is focused on
relative to the other person’s face. In our clinical context, these temporal attention
features describe a patient’s gaze on finely discretized regions of an interviewing
clinician’s face, and are used to classify their particular developmental disorder.

1 Introduction

Autism Spectrum Disorders (ASD) is an important developmental disorder with both
increasing prevalence and substantial social impact. Significant effort is spent on early
diagnosis, which is critical for proper treatment. In addition, ASD is also a highly het-
erogeneous disorder, making diagnosis especially problematic. Today, identification of
ASD requires a set of cognitive tests and hours of clinical evaluations that involve
extensively testing participants and observing their behavioral patterns (e.g. their so-
cial engagement with others). Computer-assisted technologies to identify ASD are thus
an important goal, potentially decreasing diagnostic costs and increasing standardiza-
tion.

In this work, we focus on Fragile X Syndrome (FXS). FXS is the most common known
genetic cause of autism [5], affecting approximately 100,000 people in the United
States. Individuals with FXS exhibit a set of developmental and cognitive deficits in-
cluding impairments in executive functioning, visual memory and perception, social
avoidance, communication impairments and repetitive behaviors [14]. In particular, as
in ASD more generally, eye-gaze avoidance during social interactions with others is a
salient behavioral feature of individuals with FXS. FXS is an important case study for
ASD because it can be diagnosed easily as a single-gene mutation. For our purposes,
the focus on FXS means that ground-truth diagnoses are available and heterogeneity of
symptoms in the affected group is reduced.
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Maintaining appropriate social gaze is critical for language development, emotion recog-
nition, social engagement, and general learning through shared attention [3]. Previous
studies [10,4] suggest that gaze fluctuations play an important role in the characteriza-
tion of individuals in the autism spectrum. In this work, we study the underlying pat-
terns of visual fixations during dyadic interactions. In particular we use those patterns
to characterize different developmental disorders.

We address two problems. The first challenge is to build new features to characterize
fine behaviors of participants with developmental disorders. We do this by exploiting
computer vision and multi-modal data to capture detailed visual fixations during dyadic
interactions. The second challenge is to use these features to build a system capable of
discriminating between developmental disorders. The remainder of the paper is struc-
tured as follows: In section 2, we discuss prior work. In section 3, we describe the raw
data: its collection and the sensors used. In section 4, we describe the built features
and analyze them. In section 5, describe our classification techniques. In section 5, we
describe the experiments and results. In section 6 we discuss the results.

(a) (b)

Fig. 1. (a) We study social interactions between a participant with a mental impairment and an
interviewer, using multi-modal data from a remote eye-tracker and camera. The goal of the system
is to achieve fine-grained classification of developmental disorders using this data. (b) A frame
from videos showing the participant’s view (participant’s head is visible in the bottom of the
frame). Eye-movements were tracked with a remote eye-tracker and mapped into the coordinate
space of this video.

2 Previous Work
Pioneering work by Rehg et al. [12] shows the potential of using coarse gaze infor-
mation to measure relevant behavior in children with ASD. However, this work does
not address the issue of fine-grained classification between ASD and other disorders in
an automated way. Our work thus extends this work to develop a means for disorder
classification via multi-modal data. In addition, some previous efforts in the classifi-
cation of developmental disorders such as epilepsy and schizophrenia have relied on
using electroencephalogram (EEG) recordings [11]. These methods are accurate, but
they require long recording times; in addition, the use of EEG probes positioned over a
participant’s scalp and face can limit applicability to developmental populations. Mean-
while, eye-tracking has long been used to study autism [1,7], but we are not aware of
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an automated system for inter-disorder assessment using eye-tracking such as the one
proposed here.

3 Dataset
Our dataset consists of 70 videos of an clinician interviewing a participant, overlaid
with the participant’s point of gaze (as measure by a remote eye-tracker), first reported
in [6].

The participants were diagnosed with either an idiopathic developmental disorder (DD)
or Fragile X Syndrome (FXS). Participants with DD displayed similar levels of autis-
tic symptoms to participants with FXS, but did not have a diagnosis of FXS or any
other known genetic syndrome.There are known gender-related behavioral differences
between FXS participants, so we further subdivided this group by gender into males
(FXS-M) and females (FXS-F). There were no gender-related behavioral differences
in the DD group, and genetic testing confirmed that DD participants did not have
FXS.

Participants were between 12 and 28 years old, with 51 FXS participants (32 male, 19
female) and 19 DD participants. The two groups were well-matched on chronological
and developmental age, and had similar mean scores on the Vineland Adaptive Be-
havior Scales (VABS), a well-established measure of developmental functioning. The
average score was 58.5 (SD = 23.47) for individuals with FXS and 57.7 (SD = 16.78)
for controls, indicating that the level of cognitive functioning in both groups was 2 – 3
SDs below the typical mean.

Participants were each interviewed by a clinically-trained experimenter. In our setup
the camera was placed behind the patient and facing the interviewer. Figure 1 depicts
the configuration of the interview, and of the physical environment. Eye-movements
were recorded using a Tobii X120 remote corneal reflection eye-tracker, with time-
synchronized input from the scene camera. The eye-tracker was spatially calibrated
to the remote camera via the patient looking at a known set of locations prior to the
interview.

4 Visual Fixation Features

A goal of our work is to design features that simultaneously provide insight into these
disorders and allow for accurate classification between them. These features are the
building blocks of our system, and the key challenge is engineering them to prop-
erly distill the most meaningful parts out of the raw eye-tracker and video footage.
We capture the participant’s point of gaze and its distribution over the interviewer’s
face, 5 times per second during the whole interview. There are 6 relevant regions of
interest: nose, left eye, right eye, mouth, jaw, outside face. The precise detection of
these fine-grained features enables us to study small changes in participants’ fixations
at scale.

For each video frame, we detected a set of 69 landmarks on the interviewer’s face using
a part-based model [16]. Figure 1 shows examples of landmark detections. In total,
we processed 14,414,790 landmarks. We computed 59K, 56K and 156K frames for
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(a) DD (b) FXS-F (c) FXS-M

Fig. 2. Temporal analysis of attention to face. X axis represents time in frames (in increments
of 0.2 seconds). Y axis represents each participant. Black dot represent time points when the
participant was looking at the interviewer’s face. White space signifies that they were not.

DD, FXS-Female, and FXS-Male groups respectively. We evaluated a sample of 1K
randomly selected frames, out of which only a single frame was incorrectly annotated.
We mapped the eye-tracking coordinates to the facial landmark coordinates with a linear
transformation. Our features take the label of the cluster (e.g. jaw) holding the closest
landmark to the participant point of gaze. We next present some descriptive analyses of
these data.

Feature granularity. We want to analyze the relevance of our fine grained attention
features. Participants—especially those with FXS—spent only a fraction of the time
looking at the interviewer’s face. Analyzing the time series data of when individuals are
glancing at the face of their interviewer (see Figure 2), we observe high inter-group par-
ticipant’s variance. For example, most of FXS-F individual sequences could be easily
confused with the other groups.

Clinicians often express the opinion that the distribution of fixations, not just the sheer
lack of face fixations—seem related to the general autism phenotype [10,8]. This opin-
ion is supported by the distributions in Figure 3: DD and FXS-F are quite similar,
whereas FXS-M is distinct. FXS-M focuses primarily on mouth (4) and nose (1) ar-
eas.

(a) DD (b) FXS-F (c) FXS-M

Fig. 3. Histograms of visual fixation for the various disorders. X-axis represents fixations, from
left to right: nose (1), eye-left (2), eye-right (3), mouth (4), and jaw (5). The histograms are
computed with the data of all participants. The non-face fixation is removed for visualization
convenience.

Attentional transitions. In addition to the distribution of fixations, clinicians also be-
lieve that the sequence of fixations describe underlying behavior. In particular, FXS
participants often glance to the face quickly and then look away, or scan between non-
eye regions. Figure 4 shows region-to-region transitions in a heatmap. There is a marked
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(a) DD (b) FXS-F (c) FXS-M

Fig. 4. Matrix of attentional transitions for each disorder. Each square [i j] represents the aggre-
gated number of times participants of each group transitioned attention from state i to state j. The
axes represent the different states: non-face (0), nose (1), eye-left (2), eye-right (3), mouth (4),
and jaw (5).

difference between the different disorders: Individuals with DD make more transitions,
while those with FXS exhibit significantly less—congruent with the clinical intuition.
The transitions between facial regions better identify the three groups than the transi-
tions from non-face to face regions. FXS-M participants tend to swap their gaze quite
frequently between mouth and nose, while the other two do not. DD participants exhibit
much more movement between facial regions, without any clear preference. FXS-F pat-
terns resemble DD, though the pattern is less pronounced.

Approximate Entropy. We next estimate Approximate Entropy (ApEn) analysis to pro-
vide a measure of how predictable a sequence is [13] . A lower entropy value indicates
a higher degree of regularity in the signal. For each group (DD, FXS-Female, FXS-
Male), we selected 15 random participants sequences. We compute ApEn by varying w
(sliding window length). Figure 5 depicts this analysis. We can see that there is great
variance amongst individuals of each population, many sharing similar entropy with
participants of other groups. The high variability of the data sequences makes them
harder to classify.
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Fig. 5. (a) - (c) Analysis of the ApEn of the data per individual varying the window length pa-
rameter w. Y-axis is ApEn and X-axis varies w. Each line represents one participant’s data. We
observe great variance among individuals.

5 Classifiers
The goal of this work is to create an end-to-end system for classification of develop-
mental disorders from raw visual information. So far we have introduced features that
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capture social attentional information and analyzed their temporal structure. We next
need to construct methods capable of utilizing these features to predict the specific dis-
order of the patient.

Model (RNN). The Recurrent Neural Network (RNN) is a generalization of feedforward
neural networks to sequences. Our deep learning model is an adaptation of the attention-
enhanced RNN architecture proposed by Hinton et al. [15] (LSTM+A). The model has
produced impressive results in other domains such as language modeling and speech
processing. Our feature sequences fit this data profile. In addition, an encoder-decoder
RNN architecture allows us to experiment with sequences of varying lengths in a cost-
effective manner. Our actual models differ from LSTM+A in two ways. First, we have
replaced the LSTM cells with GRU cells [2], which are are memory-efficient and could
provide a better fit to our data [9]. Second, our decoder produces a single output value
(i.e. class). The decoder is a single-unit multi-layered RNN (without unfolding) and
with a soft-max output layer. Conceptually it could be seen as a many-to-one RNN,
but we present it as a configuration of [15] given its proximity and our adoption of the
attention mechanism.

For our experiments, we used 3 RNN configurations: RNN 128: 3 layers of 128 units;
RNN 256: 3 layers of 256 units; RNN 512: 2 layers of 512 units. These parameters
were selected considering our GPU memory allocation limitation.
We trained our models for a total of 1000 epochs. We used batches of sequences, SGD
with momentum and max gradient normalization (0.5).

Other Classifiers. We also trained shallow baseline classifiers. We engineer a convolu-
tional neural network approach (CNN) that can exploit the local-temporal relationship
of our data. It is composed of one hidden layer of 6 convolutional units followed by
point-wise sigmoidal nonlinearities. The feature vectors computed across the units are
concatenated and fed to an output layer composed of an affinity transformation followed
by another sigmoid function. We also trained support vector machines (SVMs), Naive
Bayes (NB) classifiers, and Hidden Markov Models (HMMs).

6 Experiments and Results

By varying the classification methods described in Section 5 we perform a quantitative
evaluation of the overall system. We assume the gender of the patient is known, and
select the clinically-relevant pair-wise classification experiments DD vs FXS-F and DD
vs FXS-M. For the experiments we use 32 FXS-male, 19 FXS-female and 19 DD par-
ticipants. To maintain equal data distribution in training and testing we build Strain and
and Stest randomly shuffling participants of each class ensuring a 50%/50% distribution
of the two participant classes over the sets. At each new training/testing fold the process
is repeated so that the average classification results will represent the entire set of partic-
ipants. We classify the developmental disorder of the participants, given their individual
time-series feature data p, to evaluate the precision of our system. For N total partic-
ipants, we create an 80%/20% training/testing dataset such that no participant’s data
is shared between the two datasets. For each experiment, we performed 10-fold cross
validation where each fold was defined by a new random 80/20 split of the participants
–about 80 participant’s were tested per experiment.
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window length DD vs FXS-female (precision) DD vs FXS-male (precision)
SVM 3 0.65 0.83

10 0.65 0.80
50 0.55 0.85

N.B 3 0.60 0.85
10 0.60 0.87
50 0.60 0.75

HMM 3 0.67 0.81
10 0.66 0.82
50 0.68 0.74

CNN 3 0.68 0.82
10 0.68 0.90
50 0.55 0.77

RNN 128 3 0.69 0.79
RNN 250 10 0.79 0.81
RNN 512 50 0.86 0.91

Table 1. Comparison of precision of our system against other classifiers. Columns denote pair-
wise classification precision of participants for DD vs FXS-female and DD vs FXS-male binary
classification. Classifiers are run on 3,10, and 50 seconds time windows. We compare the system
classifier, RNN to CNN, SVM, NB, and HMM algorithms.

Metric. We consider the binary classification of an unknown participant as having DD
or FXS. We adopt a voting strategy where, given a patient’s data p = [ f1, f2, .... fT ], we
classify all sub-sequences s of p of fixed length w using a sliding-window approach. In
our experiments, w correspond to 3, 10, and 50 seconds of video footage. To predict the
participant’s disorder, we employ a max-voting scheme over each class. The predicted
class C of the participant is given by:

C = argmax
c∈{C1,C2}

∑
sub-seq. s

1(Class(s) = c) (1)

Where C1,C2 ∈ {DD,FXS-F,FXS-M}, Class(s) is the output of a classifier given input
s. We use 10 cross validation folds to compute the average classification precision.

Results. The results are reported in Table 1. We find that the highest average precision
is attained using the RNN.512 model with a 50 second time window. It classifies DD
versus FXS-F with 0.86 precision and DD versus FXS-M with 0.91 precision. We sus-
pect that the salient results produced by the RNN 512 are related to its high capacity
and its capability of representing complex temporal structures.

7 Conclusion
We hereby demonstrate the use of computer vision and machine learning techniques in
a cost-effective system for assistive diagnosis of developmental disorders that exhibit
visual phenotypic expression in social interactions. Data of experimenters interview-
ing participants with developmental disorders was collected using video and a remote
eye-tracker. We built visual features corresponding to fine grained attentional fixations,
and developed classification models using these features to discern between FXS and
idiopathic developmental disorder. Despite finding a high degree of variance and noise
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in the signals used, our high accuracies imply the existence of temporal structures in
the data.

This work serves as a proof of concept of the power of modern computer vision systems
in assistive development disorder diagnosis. We are able to provide a high-probability
prediction about specific developmental diagnoses based on a short eye-movement record-
ing. This system, along with similar ones, could be leveraged for remarkably faster
screening of individuals. Future work will consider extending this capability to a greater
range of disorders and improving the classification accuracy.
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