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How do we know that a kitchen is a kitchen by looking? Traditional models posit that scene categori-
zation is achieved through recognizing necessary and sufficient features and objects, yet there is little
consensus about what these may be. However, scene categories should reflect how we use visual
information. Therefore, we test the hypothesis that scene categories reflect functions, or the possibilities
for actions within a scene. Our approach is to compare human categorization patterns with predictions
made by both functions and alternative models. We collected a large-scale scene category distance matrix
(5 million trials) by asking observers to simply decide whether 2 images were from the same or different
categories. Using the actions from the American Time Use Survey, we mapped actions onto each scene
(1.4 million trials). We found a strong relationship between ranked category distance and functional
distance (r � .50, or 66% of the maximum possible correlation). The function model outperformed
alternative models of object-based distance (r � .33), visual features from a convolutional neural network
(r � .39), lexical distance (r � .27), and models of visual features. Using hierarchical linear regression,
we found that functions captured 85.5% of overall explained variance, with nearly half of the explained
variance captured only by functions, implying that the predictive power of alternative models was
because of their shared variance with the function-based model. These results challenge the dominant
school of thought that visual features and objects are sufficient for scene categorization, suggesting
instead that a scene’s category may be determined by the scene’s function.
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The question “What makes things seem alike or different?” is one so
fundamental to psychology that very few psychologists have been
naïve enough to ask it (Attneave, 1950).

Although more than half a century has passed since Attneave
issued this challenge, we still have little understanding of how we
categorize and conceptualize visual content. The notion of simi-
larity, or family resemblance, is implicit in how content is con-
ceptualized (Wittgenstein, 2010), yet similarity cannot be defined
except in reference to a feature space to be operated over (Good-
man, 1972; Medin, Goldstone, & Gentner, 1993). What feature
spaces determine environmental categories? Traditionally, it has

been assumed that this feature space is comprised of a scene’s
component visual features and objects (Biederman, 1987;
Bulthoff, Edelman, & Tarr, 1995; Marr, 1982; Riesenhuber &
Poggio, 1999; Stansbury, Naselaris, & Gallant, 2013). Mounting
behavioral evidence, however, indicates that human observers
have high sensitivity to the global meaning of an image (Fei-Fei,
Iyer, Koch, & Perona, 2007; Greene & Oliva, 2009a, 2009b;
Potter, 1976), and very little sensitivity to the local objects and
features that are outside the focus of attention (Rensink, 2002).
Consider the image of the kitchen in Figure 1. If objects determine
scene category membership, then we would expect the kitchen
supply store (left) to be conceptually equivalent to the kitchen.
Alternatively, if scenes are categorized (labeled) according to
spatial layout and surfaces (Bar, 2004; Oliva & Torralba, 2001;
Torralba, Fergus, & Freeman, 2008), then observers might place
the laundry room (center) into the same category as the kitchen.
However, most of us share the intuition that the medieval kitchen
(right) is in the same category, despite sharing few objects and
features with the top image. Why is the image on the right a better
category match to the modern kitchen than the other two?

Here we put forth the hypothesis that the conceptual structure of
environments is driven primarily by the scene’s functions, or the
actions that one could perform in the scene. We assert that repre-
senting a scene in terms of its high-level functions is a better
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predictor of how humans categorize scenes than state-of-the-art
models representing a scene’s visual features or objects.

Figure 2 illustrates our approach. We constructed a large-scale
scene category distance matrix by querying over 2,000 observers
on over 63,000 images from 1,055 scene categories (Figure 2A).
Here, the distance between two scene categories was proportional
to the number of observers who indicated that the two putative
categories were “different.” We compared this human categoriza-
tion pattern with an function-based pattern created by asking
hundreds of observers to indicate which of several hundred actions
could take place in each scene (Figure 2B). We can then compute
the function-based distance for each pair of categories. We found
a striking resemblance between function-based distance and the
category distance pattern. The function model not only explained
more variance in the category distance matrix than leading models
of visual features and objects, but also contributed the most
uniquely explained variance of any tested model. These results
suggest that a scene’s functions provide a fundamental coding
scheme for human scene categorization. In other words, of the
models tested, the functions afforded by the scene best explains
why we consider two images to be from the same category.

Method

Creating Human Scene Category Distance Matrix

The English language has terms for hundreds of types of environ-
ments, a fact reflected in the richness of large-scale image databases
such as ImageNet (Deng et al., 2009) or SUN (Xiao, Ehinger, Hays,
Torralba, & Oliva, 2014). These databases used the WordNet (Miller,
1995) hierarchy to identify potential scene categories. However, we
do not know how many of these categories reflect basic- or entry-level
scene categories, as little is known about the hierarchical category
structure of scenes (Tversky & Hemenway, 1983). Therefore, our aim
was to discover this category structure for human observers at a large
scale.

To derive a comprehensive list of scene categories, we began with
a literature review. Using Google Scholar, we identified 116 articles
in human visual cognition, cognitive neuroscience, or computer vision
matching the keywords “scene categorization” or “scene classifica-
tion” that had a published list of scene categories; 1,535 unique
category terms were identified over all articles. Our goal was to
identify scene categories with at least 20 images in publically avail-
able databases. We removed 204 categories that did not meet this
criterion. We then removed categories describing animate entities
(e.g., “Crowd of people,” N � 44); specific places (e.g., “Alaska,”
N � 42); events (e.g., “forest fire,” N � 35); or objects (e.g., “playing
cards,” N � 93). Finally, we omitted 62 categories for being close
synonyms of another (e.g., “country” and “countryside”). This left us
with a total of 1,055 scene categories. To obtain images for each
category, 722 categories were found in the SUN database (Xiao et al.,
2014), 306 were taken from ImageNet (Deng et al., 2009), 24 from the
Corel database, and three from the 15-scene database of (Fei-Fei &
Perona, 2005; Lazebnik, Schmid, & Ponce, 2006; Oliva & Torralba,
2001).

We will refer to the 1,055 scene categories as putative categories.
Good categories have both high within-category similarity (cohesion),
as well as high between-category distance (distinctiveness; Iordan,
Greene, Beck, & Fei-Fei, 2015; Rosch, Mervis, Gray, Johnson, &
Boyes-Braem, 1976). We performed a large-scale experiment with
over 2,000 human observers using Amazon’s Mechanical Turk
(AMT). In each trial, two images were presented to observers side by
side. Half of the image pairs came from the same putative scene
category, while the other half were from two different categories that
were randomly selected. Image exemplars were randomly selected
within a category on each trial. To encourage participants to catego-
rize at the basic- or entry-level (Jolicoeur, Gluck, & Kosslyn, 1984;
Tversky & Hemenway, 1983), we gave participants the following
instructions: “Consider the two pictures below, and the names of the
places they depict. Names should describe the type of place, rather
than a specific place and should make sense in finishing the following
sentence ‘I am going to the . . .’,” following the operational definition
applied in the creation of the SUN database (Xiao et al., 2014). To
ensure that the instructions were understood and followed, partici-
pants were also asked to type in the category name that they would
use for the image on the left-hand side. These data were not analyzed.
Participants were not placed under time pressure to respond, and
images remained on screen until response was recorded.

Potential participants were recruited from a pool of trusted observ-
ers with at least 2,000 previously approved trials with at least 98%
approval. Additionally, participants were required to pass a brief
scene vocabulary test before participating. In the vocabulary test,
potential participants were required to match 10 scene images to their
appropriate category name (see Supplementary Material for names
and images). There were 245 potential participants who attempted the
qualification test and did not pass. Trials from 14 participants were
omitted from analysis for inappropriate typing in the response box.
Trials were omitted when workers pasted the image URL into the
category box instead of providing a name (N � 586 trials from three
workers), for submitting the hit before all trials were complete (N �
559 trials from four workers), for typing category names in languages
other than English (N � 195 trials from two workers), typing random
character strings (N � 111 trials from two workers), or for typing in
words such as “same,” “left,” or “pictures,” implying that the instruc-
tions were not understood (N � 41 trials from three workers). Work-

Figure 1. The top image depicts a kitchen. Which of the bottom images
is also a kitchen? Many influential models of visual categorization assume
that scenes sharing objects, such as the kitchen supply store (left), or
layout, such as the laundry room (middle) would be placed into the same
category by human observers. Why is the medieval kitchen also a kitchen
despite having very different objects and features from the top kitchen? See
the online article for the color version of this figure.
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ers were compensated $0.02 for each trial. We obtained at least 10
independent observations for each cell in the 1,055 � 1,055 scene
matrix, for a total of over 5 million trials. Individual participants
completed a median of five hits of this task (range: 1–36,497). There
was a median of 1,116 trials in each of the diagonal entries of the
matrix, and a median of 11 trials in each cell of the off-diagonal
entries.

From the distribution of same and different responses, we cre-
ated a dissimilarity matrix in which the distance between two
scene categories was defined as the proportion of participants who
indicated that the two categories were different. From the 1,055
categories, we identified 311 categories with the strongest within-
category cohesion (at least 70% of observers agreed that images
were from the same category). In general, categories that were

omitted were visually heterogeneous, such as “community center,”
or were inherently multimodal. For example, “dressing room”
could reflect the backstage area of a theater, or a place to try on
clothes in a department store. Thus, the final dataset included 311
scene categories from 885,968 total trials, and from 2,296 individ-
ual workers.

Creating the Scene Function Spaces

To determine whether scene categories are governed by func-
tions, we needed a broad space of possible actions that could take
place in our comprehensive set of scene categories. We gathered
these actions from the lexicon of the American Time Use Survey
(ATUS), a project sponsored by the US Bureau of Labor Statistics

Figure 2. (A) We used a large-scale online experiment to generate a distance matrix of scene categories. Over 2,000
individuals viewed more than 5 million trials in which participants viewed two images and indicated whether they
would place the images into the same category. (B) Using the LabelMe tool (Russell, Torralba, Murphy, & Freeman,
2008) we examined the extent to which scene category similarity was related to scenes having similar objects. Our
perceptual model used the output features of a state-of-the-art convolutional neural network (Sermanet et al., 2013)
to examine the extent to which visual features contribute to scene category. To generate the functional model, we took
227 actions from the American Time Use Survey. Using crowdsourcing, participants indicated which actions could
be performed in which scene categories. See the online article for the color version of this figure.
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that uses U.S. census data to determine how people distribute their
time across a number of activities. The lexicon used in this study
was pilot tested over the course of 3 years (Shelley, 2005), and
therefore, represents a complete set of goal-directed actions that
people can engage in. This lexicon was created independently from
any question surrounding vision, scenes, or categories, therefore,
avoiding the potential problem of having functions that were
designed to distinguish among categories of visual scenes. Instead,
they simply describe common actions one can engage in in every-
day life. The ATUS lexicon includes 428 specific activities orga-
nized into 17 major activity categories and 105 midlevel catego-
ries. The 227 actions included in our study included the most
specific category levels with the following exceptions:

1. The superordinate category “Caring for and Helping
Non-household members” was dropped as these actions
would be visually identical to those in the “Caring for and
Helping Household members” category.

2. In the ATUS lexicon, the superordinate-level category
“Work” contained only two specific categories (primary
and secondary jobs). Because different types of work can
look very visually different, we expanded this category
by adding 22 categories representing the major labor
sectors from the Bureau of Labor Statistics.

3. The superordinate-level category “Telephone calls” was
collapsed into one action because we reasoned that all
telephone calls would look visually similar.

4. The superordinate-level category “Traveling” was simi-
larly collapsed into one category because being in transit
to go to school (e.g.) should be visually indistinguishable
from being in transit to go to the doctor.

5. All instances of “Security procedures” have been unified
under one category for similar reasons.

6. All instances of “Waiting” have been unified under one
category.

7. All “Not otherwise specified” categories have been
removed.

The final list of actions can be found in the Supplemental
Materials.

To compare this set of comprehensive functions to a human-
generated list of functions applied to visual scenes, we took the 36
function/affordance rankings from the SUN attribute database
(Patterson, Xu, Su, & Hays, 2014). In this set, observers were
asked to generate attributes that differentiated scenes.

Mapping Functions Onto Images

To test our hypothesis that scene category distance is reflected
in the distance of scenes’ functions, we need to map functions onto
scene categories. Using a separate large-scale online experiment,
484 participants indicated which of the 227 actions could take
place in each of the 311 scene categories. Participants were
screened using the same criterion described above. In each trial, a
participant saw a randomly selected exemplar image of one scene

category along with a random selection of 17 or 18 of the 227
actions. Each action was hyperlinked to its description in the
ATUS lexicon. Participants were instructed to use check boxes to
indicate which of the actions would typically be done in the type
of scene shown.

Each individual participant performed a median of nine trials
(range: 1–4,868). Each scene category—function pair was rated by
a median of 16 participants (range: 4–86), for a total of 1.4 million
trials.

We created a 311-category by 227-function matrix in which
each cell represents the proportion of participants indicating that
the action could take place in the scene category. Because scene
categories varied widely in the number of actions they afford, we
created a distance matrix by computing the cosine distance be-
tween all possible pairs of categories, resulting in a 311 � 311
function-based distance matrix. This measures the overlap between
actions while being invariant to the absolute magnitude of the
action vector.

Function Space MDS Analysis

To better understand the scene function space, we performed a
classical metric multidimensional scaling (MDS) decomposition of
the function distance matrix. This yielded an embedding of the
scene categories such that inner products in this embedding space
approximate the (double-centered) distances between scene cate-
gories, with the embedding dimensions ranked in order of impor-
tance (Buja et al., 2008). To better understand the MDS dimen-
sions, we computed the correlation coefficient between each action
(across scene categories) with the category coordinates for a given
dimension. This provides us with the functions that are the most
and least associated with each dimension.

Alternative Models

To put the performance of the function-based model in perspec-
tive, we compared it to nine alternative models based on previ-
ously proposed scene category primitives. Five of the models
represented visual features, one model considered human-
generated scene attributes, and one model examined the human-
labeled objects in the scenes. As with the function model, these
models yielded scene category by feature matrices that were con-
verted to distance matrices using cosine distance, and then com-
pared to the category distance matrix. The object and attribute
models, like the functional model, were created from human
observers’ scene labeling. Additionally, two models measured
distances directly, based either on the lexical distance between
scene category names (the Semantic Model), or simply by whether
scenes belonged to the same superordinate level category (indoor,
urban or natural; the Superordinate-Category Model). We will
detail each of the models below.

Models of Visual Features

A common framework for visual categorization and classifica-
tion involves finding the necessary and sufficient visual features to
perform categorization for example, (Fei-Fei & Perona, 2005;
Lazebnik et al., 2006; Oliva & Torralba, 2001; Renninger &
Malik, 2004; Vogel & Schiele, 2007). Here we constructed dis-
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tance matrices based on various visual feature models to determine
how well they map on the human categorization (i.e., the category
dissimilarity matrix) and in particular compare their performance
to our functional category model.

Convolutional Neural Network

To represent the state-of-the-art in terms of visual features, we
generated a visual feature vector using the publicly distributed
OverFeat convolutional neural network (CNN) (Sermanet et al.,
2013), which was trained on the ImageNet, 2012 training set
(Deng et al., 2009). These features, computed by iteratively ap-
plying learned nonlinear filters to the image, have been shown to
be a powerful image representation for a wide variety of visual
tasks (Razavian, Azizpour, Sullivan, & Carlsson, 2014). This
seven-layer CNN takes an image of size 231 � 231 as input, and
produces a vector of 4,096 image features that are optimized for
1,000-way object classification. This network achieves top-five
object recognition on ImageNet, 2012 with approximately 16%
error, meaning that the correct object is one of the model’s first
five responses in 84% of trials. Using the top layer of features, we
averaged the features for all images in each scene category to
create a 311-category by 4,096-feature matrix.

Gist

We used the Gist descriptor features of (Oliva & Torralba,
2001). This popular model for scene recognition provides a sum-
mary statistic representation of the dominant orientations and
spatial frequencies at multiple scales coarsely localized on the
image plane. We used spatial bins at four cycles per image and
eight orientations at each of four spatial scales for a total of 3,072
filter outputs per image. We averaged the gist descriptors for each
image in each of the 311 categories to come up with a single
3,072-dimensional descriptor per category.

Color Histograms

To determine the role of color similarity in scene categorization,
we represented color using LAB color space. For each image, we
created a two-dimensional histogram of the a� and b� channels
using 50 bins per channel. We then averaged these histograms over
each exemplar in each category, such that each category was
represented as a 2,500 length vector representing the averaged
colors for images in that category. The number of bins was chosen
to be similar to those used in previous scene perception literature
(Oliva & Schyns, 2000).

Tiny Images

Torralba and colleagues (Torralba et al., 2008) demonstrated
that human scene perception is robust to aggressive image down-
sampling, and that an image descriptor representing pixel values
from such downsampled images could yield good results in scene
classification. Here, we downsampled each image to 32 � 32
pixels (grayscale). We created our 311-category by 1024 feature
matrix by averaging the downsampled exemplars of each category
together.

Gabor Wavelet Pyramid

To assess a biologically inspired model of early visual process-
ing, we represented each image in this database as the output of a
bank of multiscale Gabor filters. This type of representation has
been used to successfully model the representation in early visual
areas (Kay, Naselaris, Prenger, & Gallant, 2008). Each image was
converted to grayscale, down sampled to 128 � 128 pixels, and
represented with a bank of Gabor filters at three spatial scales (3,
6, and 11 cycles per image with a luminance-only wavelet that
covers the entire image), four orientations (0, 45, 90 and 135
degrees) and two quadrature phases (0 and 90 degrees). An iso-
tropic Gaussian mask was used for each wavelet, with its size
relative to spatial frequency such that each wavelet has a spatial
frequency bandwidth of 1 octave and an orientation bandwidth of
41 degrees. Wavelets were truncated to lie within the borders of
the image. Thus, each image is represented by 3�3�2�4 �
6�6�2�4 � 11�11�2�4 � 1,328 total Gabor wavelets. We created
the feature matrix by averaging the Gabor weights over each
exemplar in each category.

Object-Based Model

Our understanding of high-level visual processing has generally
focused on object recognition, with scenes considered as a structured
set of objects (Biederman, 1987). Therefore, we also consider a model
of scene categorization that is explicitly built upon objects. To model
the similarity of objects within scene categories, we used the LabelMe
tool (Russell et al., 2008) that allows users to outline and annotate
each object in each image by hand. 7,710 scenes from our categories
were already labeled in the SUN 2012 release (Xiao et al., 2014), and
we augmented this set by labeling an additional 223 images. There
were a total of 3,563 unique objects in this set. Our feature matrix
consisted of the proportion of scene images in each category contain-
ing a particular object. For example, if 10 out of 100 kitchen scenes
contained a “blender,” the entry for kitchen-blender would be 0.10. To
estimate how many labeled images we would need to robustly rep-
resent a scene category, we performed a bootstrap analysis in which
we resampled the images in each category with replacement (giving
the same number of images per category as in the original analysis),
and then measured the variance in distance between categories. With
the addition of our extra images, we ensured that all image categories
either had at least 10 fully labeled images or had mean SD in distance
to all other categories of less than 0.05 (e.g., less than 5% of the
maximal distance value of 1).

Scene-Attribute Model

Scene categories from the SUN database can be accurately
classified according to human-generated attributes that describe a
scene’s material, surface, spatial, and functional scene properties
(Patterson et al., 2014). To compare our function-based model to
another model of human-generated attributes, we used the 66
nonfunction attributes from (Patterson et al., 2014) for the 297
categories that were common to our studies. To further test the role
of functions, we then created a separate model from the 36
function-based attributes from their study. These attributes are
listed in the Supplementary Material.
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Semantic Models

Although models of visual categorization tend to focus on the
necessary features and objects, it has long been known that most
concepts cannot be adequately expressed in such terms (Wittgen-
stein, 2010). As semantic similarity has been suggested as a means
of solving category induction (Landauer & Dumais, 1997), we
examined the extent to which category structure follows from the
semantic similarity between category names. We examined seman-
tic similarity by examining the shortest path between category
names in the WordNet tree using the Wordnet::Similarity imple-
mentation of (Pedersen, Patwardhan, & Michelizzi, 2004). The
similarity matrix was normalized and converted into distance. We
examined each of the metrics of semantic relatedness implemented
in Wordnet::Similarity and found that this path measure was the
best correlated with human performance.

Superordinate-Category Model

As a baseline model, we examined how well a model that groups
scenes only according to superordinate-level category would pre-
dict human scene category assessment. We assigned each of the
311 scene categories to one of three groups (natural outdoors,
urban outdoors, or indoor scenes). These three groups have been
generally accepted as mutually exclusive and unambiguous
superordinate-level categories (Tversky & Hemenway, 1983; Xiao
et al., 2014). Then, each pair of scene categories in the same group
was given a distance of 0 while pairs of categories in different
groups were given a distance of 1.

Model Assessment

To assess how each of the feature spaces resembles the human
categorization pattern, we created a 311 � 311 distance matrix
representing the distance between each pair of scene categories for
each feature space. We then correlated the off-diagonal entries in
this distance matrix with those of the category distance matrix
from the scene categorization experiment. Because these matrices
are symmetric, the off-diagonals were represented in a vector of
48,205 distances.

Noise Ceiling

The variability of human categorization responses puts a limit
on the maximum correlation expected by any of the tested models.
To get an estimate of this maximum correlation, we used a boot-
strap analysis in which we sampled with replacement observations
from our scene categorization dataset to create two new datasets of
the same size as our original dataset. We then correlated these two
datasets to one another, and repeated this process 1,000 times.

Hierarchical Regression Analysis

To understand the unique variance contributed by each of our
feature spaces, we used hierarchical linear regression analysis,
using each of the feature spaces both alone and in combination to
predict the human categorization pattern. In total, 15 regression
models were used: (1) all feature spaces used together; (2) the top
four performing features together (functions, objects, attributes
and the CNN visual features); (3–6) each of the top four features

alone; (6–11) each pair of the top four features; and (12–15) each
set of three of the top four models. By comparing the r2 values of
a feature space used alone to the r2 values of that space in
conjunction with another feature space, we can infer the amount of
variance that is independently explained by that feature space. To
visualize this information in an Euler diagram, we used EulerAPE
software (Micallef & Rodgers, 2014).

Results

Human Scene Category Distance

To assess the conceptual structure of scene environments, we
asked over 2,000 human observers to categorize images as belong-
ing to 311 scene categories in a large-scale online experiment. The
resulting 311 � 311 category distance matrix is shown in Figure 3.
To better visualize the category structure, we have ordered the
scenes using the optimal leaf ordering for hierarchical clustering
(Bar-Joseph, Gifford, & Jaakkola, 2001); allowing us to see what
data-driven clusters emerge.

Several category clusters are visible. Some clusters appear to group
several subordinate-level categories into a single entry-level concept,
such as “bamboo forest,” “woodland,” and “rainforest” being exam-
ples of forests. Other clusters seem to reflect broad classes of activities
(such as “sports”) that are visually heterogeneous and cross other
previously defined scene boundaries, such as indoor-outdoor (Fei-Fei
et al., 2007; Henderson, Larson, & Zhu, 2007; Szummer & Picard,
1998; Tversky & Hemenway, 1983), or the size of the space (Greene
& Oliva, 2009a; Oliva & Torralba, 2001; Park, Konkle, & Oliva,
2014). Such activity-oriented clusters hint that the actions that one can
perform in a scene (the scene’s functions) could provide a fundamen-
tal grouping principle for scene category structure.

Function-Based Distance Best Correlates With Human
Category Distance

For each of our feature spaces, we created a distance vector (see
Model Assessment) representing the distance between each pair of
scene categories. We then correlated this distance vector with the
human distance vector from the previously described experiment.

To quantify the performance of each of our models, we defined a
noise ceiling based on the interobserver reliability in the human scene
distance matrix. This provides an estimate of the explainable variance
in the scene categorization data, and thus provides an upper bound on
the performance of any of our models. Using bootstrap sampling (see
Methods), we found an interobserver correlation of r � .76. In other
words, we cannot expect a correlation with any model to exceed this
value.

Function-based similarity had the highest resemblance to the hu-
man similarity pattern (r � .50 for comprehensive set, and r � .51 for
the 36 functional attributes). This represents about 2/3 of the maxi-
mum observable correlation obtained from the noise ceiling. As
shown in Figure 4A, this correlation is substantially higher than any
of the alternative models we tested. The two function spaces were
highly correlated with one another (r � .63). As they largely make the
same predictions, we will use the results from the 227-function set for
the remainder of the article.

Of course, being able to perform similar actions often means
manipulating similar objects, and scenes with similar objects are
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likely to share visual features. Therefore, we compared function-
based categorization patterns to alternative models based on per-
ceptual features, nonfunction attributes, object-based similarity,
and the lexical similarity of category names.

We tested five different models based on purely visual features.
The most sophisticated used the top-level features of a state-of-the-art
CNN model (Sermanet et al., 2013) trained on the ImageNet database
(Deng et al., 2009). Category distances in CNN space produced a
correlation with human category dissimilarity of r � .39. Simpler
visual features, however, such as gist (Oliva & Torralba, 2001), color
histograms (Oliva & Schyns, 2000), Tiny Images (Torralba et al.,
2008), and wavelets (Kay et al., 2008) had low correlations with
human scene category dissimilarity.

Category structure could also be predicted to some extent based
on the similarity between the objects present in scene images (r �
.33, using human-labeled objects from the LabelMe database (Rus-
sell et al., 2008), the nonfunction-based attributes (r � .28) of the
SUN attribute database (Patterson et al., 2014), or the lexical

distance between category names in the WordNet tree (Huth,
Nishimoto, Vu, & Gallant, 2012; Miller, 1995; Pedersen et al.,
2004; r � .27). Surprisingly, a model that merely groups scenes by
superordinate-level categories (indoor, urban or natural environ-
ments) also had a sizable correlation (r � .25) with human dis-
similarity patterns.

Although each of these feature spaces had differing dimensionali-
ties, this pattern of results also holds if the number of dimensions is
equalized through principal components analysis. We created mini-
mal feature matrices by using the first N PCA components, and then
correlated the cosine distance in these minimal feature spaces with the
human scene distances, see Figure 5. We found that the functional
features were still the most correlated with human behavior.

Independent Contributions From Alternative Models

To what extent does function-based similarity uniquely explain
the patterns of human scene categorization? Although function-

Figure 3. The human category distance matrix from our large-scale online experiment was found to be sparse.
Over 2,000 individual observers categorized images in 311 scene categories. We visualized the structure of this
data using optimal leaf ordering for hierarchical clustering, and show representative images from categories in
each cluster. See the online article for the color version of this figure.
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based similarity was the best explanation of the human categori-
zation pattern of all the models we tested, CNN and object-based
models also had sizable correlations with human behavior. To
what extent do these models make the same predictions?

To assess the independent contributions made by each of the
models, we used a hierarchical linear regression analysis in which
each of the three top-performing models was used either separately
or in combination to predict the human similarity pattern. By
comparing the r2 values from the individual models to the r2 values
for the combined model, we can assess the unique variance ex-
plained by each descriptor. A combined model with all features
explained 31% of the variance in the human similarity pattern (r �
.56). This model is driven almost entirely by the top four feature
spaces (functions, CNN, attribute, and object labels), which ex-
plained 95% of the variance from all features, a combined 29.4%
of the total variance (r � .54). Note that functions explained 85.6%
of this explained variance, indicating that the object and perceptual
features only added a small amount of independent information
(14.4% of the combined variance). Variance explained by all 15
regression models is listed in Table 1.

Although there was a sizable overlap between the portions of the
variance explained by each of the models (see Figure 4B), around
half of the total variance explained can be attributed only to
functions (44.2% of the explained variance in top four models),
and was not shared by the other three models. In contrast, the
independent variance explained by CNN features, object-based
features, and attributes accounted for only 6.8%, 0.6%, and 0.4%

Figure 5. Robustness to dimensionality reduction. For each feature space,
we reconstructed the feature matrix using a variable number of PCA
components and then correlated the cosine distance in this feature space
with the human scene distances. Although the number of features varies
widely between spaces, all can be described in �100 dimensions, and the
ordering of how well the features predict human responses is essentially the
same regardless of the number of original dimensions. See the online
article for the color version of this figure.

Figure 4. (A) Correlation of all models with human scene categorization
pattern. Function-based models (dark blue, left) showed the highest resem-
blance to human behavior, achieving 2/3 of the maximum explainable
similarity (black dotted line). Of the models based on visual features
(yellow), only the model using the top-level features of the convolutional
neural network (CNN) showed substantial resemblance to human data. The
object-based model, the attribute-based model, the lexical model and the
superordinate-level model all showed moderate correlations. (B) Euler
diagrams showing the distribution of explained variance for sets of the four
top-performing models. The function-based model (comprehensive) ac-
counted for between 83.3% and 91.4% of total explained variance of joint
models, and between 45.2% and 58.1% of this variance was not shared
with alternative models. Size of Euler diagrams is approximately propor-
tional to the total variance explained. See the online article for the color
version of this figure.
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of the explained variance, respectively. Therefore, the contribu-
tions of visual, attribute, and object-based features are largely
shared with function-based features, further highlighting the utility
of functions for explaining human scene categorization patterns.

Functions Explain All Types of Scene Categories

Does the impressive performance of the functional model hold
over all types of scene categories, or is performance driven by
outstanding performance on a particular type of scene? To address
this question, we examined the predictions made by the three
top-performing models (functions, CNN, and objects) on each of
the superordinate-level scene categories (indoor, urban, and natu-
ral landscape) separately. As shown in Table 2, we found that the
function-based model correlated similarly with human categoriza-
tion in all types of scenes. This is in stark contrast to the CNN and
object models, whose performance was driven by performance on
the natural landscape scenes.

Examining Scene Function Space

To better understand the function space, we performed clas-
sical multidimensional scaling on the function distance matrix,
allowing us to identify how patterns of functions contribute to
the overall similarity pattern. We found that at least 10 MDS
dimensions were necessary to explain 95% of the variance in
the function distance matrix, suggesting that the efficacy of the
function-based model was driven by a number of distinct func-
tion dimensions, rather than just a few useful functions. We
examined the projection of categories onto the first three MDS
dimensions. As shown in Figure 6, the first dimension appears
to separate indoor locations that have a high potential for social
interactions (such as “socializing” and “attending meetings for
personal interest”) from outdoor spaces that afford more soli-
tary activities, such as “hiking” and “science work.” The second
dimension separates work-related activities from leisure. Later
dimensions appear to separate environments related to trans-
portation and industrial workspaces from restaurants, farming,
and other food-related environments, see Figure 7 for listing of
associated categories and functions for each MDS dimension. A

follow-up experiment demonstrated that functions that are
highly associated with a particular object (e.g., “mailing” is
strongly associated with objects such as mailboxes and enve-
lopes) are equally predictive of categorization patterns as func-
tions that do not have strong object associates (e.g., “helping an
adult”), see Supplementary Materials for details.

Why does the function space have higher fidelity for predict-
ing human patterns of scene categorization? To concretize this
result, we will examine a few failure cases for alternative
features. Category names should reflect cognitively relevant
categories, so what hurts the performance of the lexical distance
model? This model considers the categories “access road” and
“road tunnel” to have the lowest distance of all category pairs
(possibly because both contain the term “road”), while only
10% of human observers placed these into the same category.
By contrast, the function model considered them to be rather
distant, with only 35% overlap between functions (intersection
over union). Shared functions included “in transit/traveling”
and “architecture and engineering work,” while tunnels inde-
pendently afforded “rock climbing and caving” and access
roads often contained buildings, thus affording “building
grounds and maintenance work.” If objects such as buildings
can influence both functions and categories, then why do not
objects fare better? Consider the categories “underwater kelp
forest” and “underwater swimming pool.” The object model
considers them to be very similar given the presence of water,
but 80% of human observers consider them to be different.
Similarly, these categories share only 17% overlap in functions,
with the kelp forest affording actions such as “science work,”
while the swimming pool affords “playing sports with chil-
dren.”

Of course, certain failure cases of the function model should
also be mentioned. For example, while all human observers
agreed that “bar” and “tea room” were different categories, the
function model considered them to be similar, given their
shared functions of “socializing,” “eating and drinking,” “food
preparation and serving work,” and so forth. Similarly, the
function model considered “basketball arena” and “theater” to
be similar, while human observers did not. Last, the function
model also frequently confused scene categories that shared a
particular sport, such as “baseball field” and “indoor batting
cage,” while no human observers placed them in the same
category. However, it should be noted that human observers
also shared this last trait in other examples, with 55% of
observers placing “bullpen” and “pitcher’s mound” into the
same category.

Table 1
Variance Explained (r2) by 15 Regression Models

Model r2

Attribute .08
Object .11
CNN .15
Function .25
Object � Attribute .11
Attribute � CNN .15
Object � CNN .16
Object � Function .27
Attribute � Function .27
CNN � Function .29
Object � Attribute � CNN .16
Object � Attribute � Function .27
Attribute � CNN � Function .29
Object � CNN � Function .29
Attribute � Object � CNN � Function .29

Table 2
Correlation of Top-Four Models in Each of the Three
Superordinate-Level Scene Categories

Indoor Urban Natural

Functions .50 .47 .51
CNN .37 .43 .59
Attributes .15 .20 .41
Objects .19 .27 .44

Note. The function-based model performs similarly in all types of scenes,
while the CNN, attribute, and object-based models perform poorly in
indoor environments.
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Discussion

We have shown that human scene categorization is better explained
by the action possibilities, or functions, of a scene than by the scene’s
visual features or objects. Furthermore, function-based features ex-
plained far more independent variance than did alternative models, as
these models were correlated with human category patterns only
insofar as they were also correlated with the scene’s functions. This
suggests that a scene’s functions contain essential information for
categorization that is not captured by the scene’s objects or visual
features.

The current results cannot be explained by the smaller dimen-
sionality of the function-based features, as further analysis re-
vealed that function-based features outperformed other feature
spaces using equivalent numbers of dimensions. Furthermore, this

pattern was observed over a wide range of dimensions, suggesting
that each functional feature contained more information about
scene categories than each visual or object-based feature. Criti-
cally, the function-based model performed with similar fidelity on
all types of scenes, which is a hallmark of human scene perception
(Kadar & Ben-Shahar, 2012) that is not often captured in compu-
tational models. Indeed, indoor scene recognition is often much
harder for computer models than other classification problems
(Quattoni & Torralba, 2009; Szummer & Picard, 1998) and this
was true for our visual and object-based models, while the function
model showed high fidelity for explaining indoor scene categori-
zation.

The idea that the function of vision is for action has permeated the
literature of visual perception, but it has been difficult to fully opera-
tionalize this idea for testing. Psychologists have long theorized that
rapid and accurate environmental perception could be achieved by the
explicit coding of an environment’s affordances, most notably in J.J.
Gibson’s influential theory of ecological perception (Gibson, 1986).
This work is most often associated with the direct perception of
affordances that reflect relatively simple motor patterns such as sitting
or throwing. As the functions used in the current work often reflect
higher-level, goal-directed actions, and because we are making no
specific claims about the direct perception of these functions, we have
opted not to use the term affordances here. Nonetheless, ideas from
Gibson’s ecological perception theory have inspired this work, and
thus, we consider our functions as conceptual extensions of Gibson’s
idea.

In our work, a scene’s functions are those actions that one can
imagine doing in the scene, rather than the activities that one
reports as occurring in the scene. This distinguishes this work from
that of activity recognition (Aggarwal & Ryoo, 2011; Hafri, Pa-
pafragou, & Trueswell, 2013; Wiggett & Downing, 2011; Yao &
Fei-Fei, 2010), placing it closer to the ideas of Gibson and the
school of ecological psychology.

Previous small-scale studies have found that environmental func-
tions such as navigability are reflected in patterns of human catego-
rization (Greene & Oliva, 2009a, 2010), and are perceived very
rapidly from images (Greene & Oliva, 2009b). Our current results
provide the first comprehensive, data-driven test of this hypothesis,
using data from hundreds of scene categories and affordances. By
leveraging the power of crowdsourcing, we were able to obtain both
a large-scale similarity structure for visual scenes, but also normative
ratings of functions for these scenes. Using hundreds of categories,
thousands of observers, and millions of observations, crowdsourcing
allowed a scale of research previously unattainable. Previous research
on scene function has also suffered from the lack of a comprehensive
list of functions, relying instead on the free responses of human
observers describing the actions that could be taken in scenes (Greene
& Oliva, 2009a; Patterson & Hays, 2012). By using an already
comprehensive set of actions from the American Time Use Survey,
we were able to see the full power of functions for predicting human
categorization patterns. The current results speak only to categoriza-
tion patterns obtained from unlimited viewing times, and future work
will examine the extent to which function-based categorization holds
for limited viewing times, similar to previous work (Greene & Oliva,
2009a, 2009b).

Given the relatively large proportion of variance indepen-
dently explained by function-based features, we are left with the
question of why this model outperforms the more classic mod-

Figure 6. (Top): Distribution of superordinate-level scene categories
along the first MDS dimension of the function distance matrix, which
separates indoor scenes from natural scenes. Actions that were positively
correlated with this component tend to be outdoor-related activities such as
hiking while negatively correlated actions tend to reflect social activities
such as eating and drinking. (Middle) The second dimension seems to
distinguish environments for work from environments for leisure. Actions
such as playing games are positively correlated while actions such as
construction and extraction work are negatively correlated (Bottom). The
third dimension distinguishes environments related to farming and food
production (pastoral) from industrial scenes specifically related to trans-
portation. Actions such as travel and vehicle repair are highly correlated
with this dimension, while actions such as farming and food preparation
are most negatively correlated. See the online article for the color version
of this figure.
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els. By examining patterns of variance in the function by
category matrix, we found that functions can be used to separate
scenes along previously defined dimensions of scene variance,
such as superordinate-level category (Joubert, Rousselet, Fize,
& Fabre-Thorpe, 2007; Loschky & Larson, 2010; Tversky &
Hemenway, 1983), and between work and leisure activities
(Ehinger, Torralba, & Oliva, 2010). Although the variance

explained by function-based similarity does not come directly
from visual features or the scene’s objects, human observers
must be able to apprehend these functions from the image
somehow. It is, therefore, a question open for future work to
understand the extent to which human observers bring nonvi-
sual knowledge to bear on this problem. Of course, it is possible
that functions can be used in conjunction with other features for

Figure 7. Principal components of function matrix. MDS was performed on the scene by function matrix, yielding
a coordinate for each scene along each MDS dimension, as well as a correlation between each function and each
dimension. The fraction of variance in scene distances explained by each dimension was also computed, showing that
these first four dimensions capture 81% of the function distance model. See the online article for the color version of
this figure.
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categorization, just as shape can be determined independently
from shading (Ramachandran, 1988), motion (Julesz, 2006), or
texture (Gibson, 1950).

Some recent work has examined large-scale neural selectivity
based on semantic similarity (Huth et al., 2012), or object-based
similarity (Stansbury et al., 2013), finding that both types of
conceptual structures can be found in the large-scale organization
of human cortex. Our current work indeed shows sizable correla-
tions between these types of similarity structures and human
behavioral similarity. However, we find that function-based sim-
ilarity is a better predictor of behavior and may provide an even
stronger grouping principle in the brain.

Despite the impressive predictive power of functions for explaining
human scene categorization, many open questions are still left about
the nature of functions. To what extent are they perceptual primitives
as suggested by Gibson, and to what extent are they inherited from
other diagnostic information? The substantial overlap between func-
tions and objects and visual features (Figure 4B) implies that at least
some functions are correlated with these features. Intuitively, this
makes sense as some functions, such as “mailing” may be strongly
associated with objects such as a mailbox or an envelope. However,
our results suggest that the mere presence of an associated object may
not be enough: just because the kitchen supply store has pots and pans
does not mean that one can cook there. The objects must conform in
type, number, and spatial layout to jointly give rise to functions.
Furthermore, some functions such as “jury duty,” “waiting,” and
“socializing” are harder to associate with particular objects and fea-
tures, and may require higher-level, nonvisual knowledge. While the
current results bypass the issue of how observers compute the func-
tions, we must also examine how the functions can be understood
directly from images in a bottom-up manner.

These results challenge many existing models of visual categori-
zation that consider categories to be purely a function of shared visual
features or objects. Just as the Aristotelian theory of concepts assumed
that categories could be defined in terms of necessary and sufficient
features, classical models of visual categorization have assumed that
a scene category can be explained by necessary and sufficient objects
(Biederman, 1987; Stansbury et al., 2013) or diagnostic visual fea-
tures (Renninger & Malik, 2004; Vogel & Schiele, 2007). However,
just as the classical theory of concepts cannot account for important
cognitive phenomena, the classical theory of scene categories cannot
account for the fact that two scenes can share a category even when
they do not share many features or objects. By contrast, the current
results demonstrate that the possibility for action creates categories of
environmental scenes. In other words, a kitchen is a kitchen because
it is a space that affords cooking, not because it shares objects or other
visual features with other kitchens.
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